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Abstract

In this note, we analyze the concavity, and the convexity, of the constant elasticity of

substitution (CES) function by means of the power mean inequality.
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1. Introduction

To prove the concavity, or convexity, of the constant elasticity of substitution (CES) utility, or

production, function (see Arrow et al., 1961), one can check when the associated hessian matrix

is negative, or positive, semidefinite (see, for instance, Simon and Blume, 1994, Theorem 21.5,

p. 513). This general procedure, however, may be rather cumbersome when the number of

commodities is large. Therefore, an alternative, more straightforward, proof would be useful,

also in the light of the fact that the CES function is widely used in economic models.

In this note, we use the power mean inequality to show when the CES function satisfies the

gradient inequality that characterizes a concave, or a convex, function. Our approach has both,

advantages and disadvantages: on the one hand, assuming a smaller or larger number of com-

modities does not affect the application of our proof, which is a rather immediate consequence

of the power mean inequality. On the other hand, the proof is tailored to the CES function,

and cannot be directly extended to other functional forms.

The relation between the CES function and the power mean is well known since Arrow et al.

(1961); exploiting it to study the concavity, and the convexity, of the function is, to the best of

our knowledge, an original contribution. Actually, our proof was inspired by Afriat (1987, p.

189), who shows that the Cobb-Douglas utility, or production, function is concave by verifying
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that it satisfies the gradient inequality that characterizes a concave function. The proof is based

on a direct application of the arithmetic mean-geometric mean inequality, which is a special

case of the power mean inequality. Therefore, our result can be regarded as a generalization of

Afriat’s approach to the case of the CES function.

2. The main result

Let γ ∈ R, with γ ̸= 0, X = RJ
++, and aj > 0, j = 1, 2, ...J .1 Consider the constant elasticity

of substitution function f : X → R defined as

f(x) =

(
J∑

j=1

ajx
γ
j

) 1
γ

When γ = 1, f is linear, hence both concave and convex on X. In what follows, we concentrate

on the case γ ̸= 1.

Recall that a differentiable real-valued function f̃ defined on an open convex set X in RJ is

concave if and only if, for every x, x̂ ∈ X,

f̃(x) ⩽ f̃(x̂) +∇f̃(x̂) · (x− x̂) , (Conc)

and it is convex if and only if the above inequality is reversed (see, for instance, Simon and

Blume, 1994, Theorem 21.2, p. 510).

Since f is homogeneous of degree one, f(x) = ∇f(x) · x by the Euler’s theorem (see, for

instance, Simon and Blume, 1994, Theorem 20.4, p. 491). Therefore, condition (Conc) reduces

to

f(x) ⩽ ∇f(x̂) · x for all x, x̂ ∈ X (1)

Let φ(x̂) =
∑

j ajx̂
γ
j . By direct computation,

∂f(x̂)

∂xj

=

(
ajx̂

γ
j

φ(x̂)

)
f(x̂)

x̂j

,

for every j = 1, ..., J , so that

∇f(x̂) · x =

[
J∑

j=1

(
ajx̂

γ
j

φ(x̂)

)
xj

x̂j

]
f(x̂) (2)

1It is not required that a1 + a2 + ...aJ = 1.
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Since f(x̂) > 0, we can use (2) to rewrite condition (1) as follows:

f(x)

f(x̂)
⩽

J∑
j=1

(
ajx̂

γ
j

φ(x̂)

)
xj

x̂j

(3)

To show that f is concave, we have to verify that it satisfies (3) for any x, x̂ ∈ X. Similarly, to

show that it is convex we need to verify that, for any x, x̂ ∈ X,

f(x)

f(x̂)
⩾

J∑
j=1

(
ajx̂

γ
j

φ(x̂)

)
xj

x̂j

(4)

Our proof relies on the power mean inequality, which states that

(
J∑

j=1

wjz
r
j

) 1
r

⩽

(
J∑

j=1

wjz
s
j

) 1
s

for any r, s ∈ R, r < s, and zj, wj > 0, j = 1, 2, ...J , with w1+w2+ ...wJ = 1 (see, for instance,

Steele, 2004, chapter 8.3). Notice that this inequality implies

(
J∑

j=1

wjz
r
j

) 1
r

⩽
J∑

j=1

wjzj (5)

when r < 1 = s, and
J∑

j=1

wjzj ⩽

(
J∑

j=1

wjz
s
j

) 1
s

(6)

when r = 1 < s. To take the final step, consider the auxiliary variables

wj =
ajx̂

γ
j

φ(x̂)
and zj =

xj

x̂j

,

so that zj, wj > 0 for every j, and w1 + w2 + ...wJ = 1, and observe that

f(x)

f(x̂)
=

(∑J
j=1 ajxj

) 1
γ

(∑J
j=1 ajx̂j

) 1
γ

=

(∑J
j=1 ajxj

) 1
γ

(φ(x̂))
1
γ

=

(
J∑

j=1

ajx̂
γ
j

φ(x̂)

xj

x̂j

) 1
γ

and also that
J∑

j=1

(
ajx̂

γ
j

φ(x̂)

)
xj

x̂j

=
J∑

j=1

wjzj
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Figure 1: Curve levels for different values of γ
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(a) γ = 0.5
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(b) γ = 2

Therefore, when γ < 1, (3) is equivalent to (5), hence f is concave on X; when γ > 1, (5) is

equivalent to (6), hence f is convex on X. The proof is thus complete.

Figure 1 shows the curve levels of the CES function when J = 2, i.e., when there are two

commodities x1 and x2. In the left panel, we let γ = 0.5, so that the function is concave; in the

right panel, we let γ = 2, hence the function is convex.2

For sake of completeness, we reproduce the original result due to Afriat (1987), where the

function f : X → R is defined by3

f(x) =
J∏

j=1

x
aj
j ,

so that
∂f(x̂)

∂xj

=

(
aj
x̂j

)
f(x̂) , hence ∇f(x̂) · x =

[
J∑

j=1

aj

(
xj

x̂j

)]
f(x̂)

Condition (1) is, therefore, equivalent to

f(x)

f(x̂)
⩽

J∑
j=1

aj

(
xj

x̂j

)
(7)

2In both figures, it is assumed that a1 = a2 = 1.
3This corresponds to the case γ = 0, or more precisely lim γ → 0, in the CES function. For this case, it is

assumed that a1 + a2 + ...aJ = 1.
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Setting wj = aj, and zj as before, implies that

f(x)

f(x̂)
=

(
J∏

j=1

x̂
aj
j

)−1( J∏
j=1

x
aj
j

)
=

J∏
j=1

z
wj

j ⩽
J∑

j=1

wjzj =
J∑

j=1

aj

(
xj

x̂j

)
,

where the inequality follows from the arithmetic mean-geometric mean inequality, a special case

of the power mean inequality; hence f is concave.

3. Conclusion

In this note, we have proposed a straightforward proof to verify the concavity, and the convexity,

of the CES function, which is inspired by a proof due to Afriat (1987). It should be contrasted

with the general procedure based on the semidefiniteness of the hessian matrix of the function,

which becomes cumbersome when the number of commodities is large. However, the proof is

tailored to the CES function, and cannot be directly extended to other functional forms.
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